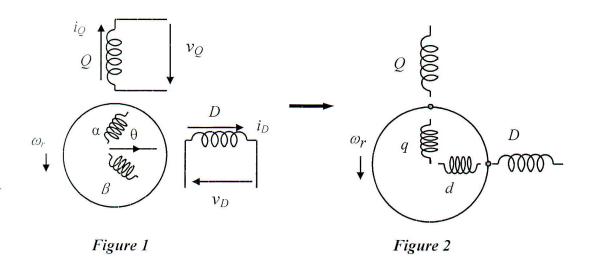
Menoufiya University Faculty of Engineering Shebin El-Kom First Semester Examination Academic Year: 2013-2014

Year: 2014 Department: Electrical Engineering Subject: Theories of Electrical Machines, ELE 602 Time Allowed: 3 hours Date: 21/1/2014


Allowed Tables and Charts: None

Answer the following:

Question (1)

(20 Marks)

Transform the balanced two – phase induction machine of Figure 1 to axes stationary relative to the stator as shown in Figure 2.

Question (2)

(20 Marks)

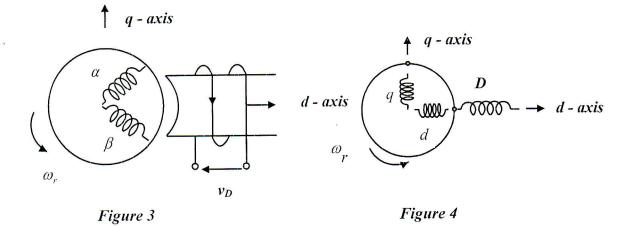
A 500 V, three phase 50 Hz, 8 pole, star connected induction motor has the following equivalent circuit parameters: $R_1 = 0.13 \Omega$, $R_2 = 0.32 \Omega$, $x_1 = 0.6 \Omega$, $x_2 = 1.48 \Omega$ and the magnetizing branch admittance $Y_m = 0.004 - j 0.05 \Omega^1$ referred to primary side (the stator). The full load slip is 5%. Determine the full load electromagnetic torque, stator input current and power factor using both the *"approximate"* and the *"exact"* equivalent circuits as well as the general machine theory if the effective (stator/rotor) turns ratio per phase is k = 1/1.57 and mechanical loss is to be neglected.

Question (3)

(20 Marks)

Calculate the torque of a 3 – phase, 4 - pole induction motor, 50 Hz when it is fed from: (i) symmetrical 3 phase 400 V supply at 0.05 slip, (ii) asymmetrical 3 phase voltages to neutral, and running with the same speed where the three voltages are $V_a = 240\angle 0^\circ$, $V_b = 183\angle 229^\circ$, $V_c = 183\angle 113^\circ$, and motor parameters are $X_s = X'_r = 4\Omega$, $R_s = R'_r = 1\Omega$, $X_m = 100\Omega$.

Question (4)


(20 Marks)

Let us consider a certain synchronous generator having $X_d = 0.9$ p.u. and $X_q = 0.6$ p.u. is operating at full load, 0.8 pf lagging. It is required to calculate the excitation E_f in terms of the terminal voltage, the load angle δ , and the value of I_d and I_q by means of the classical method and the general machine method. Neglect armature resistance and saturation.

Question (5)

(20 Marks)

The salient pole, two phase synchronous machine of Figure 3 is transformed into stationary axes as shown in Figure 4, write the transient voltage equation in matrix form for Figure 4.

Good Luck Every One

This exam measures the following ILOs

Question number	1	2	3	4	5
Ilos	al-1, a3-1	b1-2, b2-1	C4-1	b1-2, b2-1	a1-1, a3-1, d2-1